Bootstrap methods : a guide for practitioners and researchers / Michael R. Chernick

Por: Chernick, Michael RTipo de material: TextoTextoSeries Wiley series in probability and statisticsEditor: Hoboken, N.J. : Wiley-Interscience, 2008Edición: Second editionDescripción: xviii, 369 páginas : ilustracionesTipo de contenido: texto Tipo de medio: no mediado Tipo de portador: volumenISBN: 9780471756217 (cloth); 0471756210 (cloth)Tema(s): BOOTSTRAP (Estadística)Clasificación CDD: 519.544 Recursos en línea: VERSIÓN DIGITAL
Contenidos:
1. What is bootstrapping? -- 1.1. Background -- 1.2. Introduction -- 1.3. Wide range of applications -- 1.4. Historical notes -- 1.5. Summary -- 2. Estimation -- 2.1. Estimating bias -- 2.1.1. How to do it by bootstrapping -- 2.1.2. Error rate estimation in discrimination -- 2.1.3. Error rate estimation: an illustrative problem -- 2.1.4. Efron's patch data example -- 2.2. Estimating location and dispersion -- 2.2.1. Means and medians -- 2.2.2. Standard errors and quartiles -- 2.3. Historical notes -- 3. Confidence sets and hypothesis testing -- 3.1. Confidence sets -- 3.1.1. Typical value theorems for M-estimates -- 3.1.2. Percentile method -- 3.1.3. Bias Correction and the Acceleration Constant -- 3.1.4. Iterated Bootstrap -- 3.1.5. Bootstrap Percentile t Confidence Intervals -- 3.2. Relationship Between Confidence Intervals and Tests of Hypotheses -- 3.3. Hypothesis Testing Problems -- 3.3.1. Tendril DX Lead Clinical Trial Analysis -- 3.4. Application of bootstrap confidence Intervals to Binary Dose-Response Modeling -- 3.5. Historical Notes -- 4. Regression analysis -- 4.1. Linear Models -- 4.1.1. Gauss-Markov Theory -- 4.1.2. Why Not Just Use Least Squares? -- 4.1.3. Should I Bootstrap the Residuals from the Fit? -- 4.2. Nonlinear Models -- 4.2.1. Examples of Nonlinear Models -- 4.2.2. Quasi-optical Experiment -- 4.3. Nonparametric Models -- 4.4. Historical Notes -- 5. Forecasting and Time Series Analysis -- 5.1. Methods of Forecasting -- 5.2. Time Series Models -- 5.3. When Does Bootstrapping Help with Prediction Intervals? -- 5.4. Model-Based Versus Block Resampling -- 5.5. Explosive Autoregressive Processes -- 5.6. Bootstrapping-Stationary Arma Models -- 5.7. Frequency-Based Approaches -- 5.8. Sieve Bootstrap -- 5.9. Historical notes -- 6. Which resampling Method Should You Use? -- 6.1. Related Methods -- 6.1.1. Jackknife -- 6.1.2. Delta Method, Infinitesimal Jackknife, and Influence Functions -- 6.1.3. Cross-Validation -- 6.1.4. Subsampling -- 6.2. Bootstrap variants -- 6.2.1. Bayesian bootstrap -- 6.2.2. Smoothed bootstrap -- 6.2.3. Parametric Bootstrap -- 6.2.4. Double bootstrap -- 6.2.5. m-out-of-n Bootstrap -- 7. Efficient and Effective Simulation -- 7.1. How Many Replications? -- 7.2. Variance Reduction Methods -- 7.2.1. Linear Approximation -- 7.2.2. Balanced Resampling -- 7.2.3. Antithetic Variates -- 7.2.4. Importance Sampling -- 7.2.5. Centering -- 7.3. When Can Monte Carlo Be Avoided? -- 7.4. Historical Notes -- 8. Special Topics -- 8.1. Spatial Data -- 8.1.1. Kriging -- 8.1.2. Block Bootstrap on Regular Grids -- 8.1.3. Block Bootstrap on Irregular Grids -- 8.2. Subset Selection -- 8.3. Determining the Number of Distributions in a Mixture Model -- 8.4. Censored Data -- 8.5. p-Value Adjustment -- 8.5.1. Description of Westfall-Young Approach -- 8.5.2. Passive Plus OX Example -- 8.5.3. Consulting Example -- 8.6. Bioequivalence Applications -- 8.6.1. Individual Bioequivalence -- 8.6.2. Population Bioequivalence -- 8.7. Process Capability Indices -- 8.8. Missing Data -- 8.9. Point Processes -- 8.10. Lattice Variables -- 8.11. Historical Notes -- 9. When Bootstrapping Fails Along with Remedies for Failures -- 9.1. Too Small of a Sample Size -- 9.2. Distributions with Infinite Moments -- 9.2.1. Introduction -- 9.2.2. Example of Inconsistency -- 9.2.3. Remedies -- 9.3. Estimating Extreme Values -- 9.3.1. Introduction -- 9.3.2. Example of Inconsistency -- 9.3.3. Remedies -- 9.4. Survey Sampling -- 9.4.1. Introduction -- 9.4.2. Example of Inconsistency -- 9.4.3. Remedies -- 9.5. Data Sequences that Are M-Dependent -- 9.5.1. Introduction -- 9.5.2. Example of Inconsistency When Independence Is Assumed -- 9.5.3. Remedies -- 9.6. Unstable Autoregressive Processes -- 9.6.1. Introduction -- 9.6.2. Example of Inconsistency -- 9.6.3. Remedies -- 9.7. Long-Range Dependence -- 9.7.1. Introduction -- 9.7.2. Example of Inconsistency -- 9.7.3. Remedies -- 9.8. Bootstrap Diagnostics -- 9.9. Historical Notes.
Lista(s) en las que aparece este ítem: COLECCION BIBLIOTECA DIGITAL
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección número de clasificación Copia número Estado Notas Fecha de vencimiento Código de barras
Bibliografía General Complementaria Bibliografía General Complementaria Biblioteca Campus San Joaquín
Colección General 519.544 C521 (Navegar estantería(Abre debajo)) 1 Disponible 35609002082549
Bibliografía General Complementaria Bibliografía General Complementaria Biblioteca Central
Colección General 519.544 C521 (Navegar estantería(Abre debajo)) 1 Disponible 3560900255761

1. What is bootstrapping? -- 1.1. Background -- 1.2. Introduction -- 1.3. Wide range of applications -- 1.4. Historical notes -- 1.5. Summary -- 2. Estimation -- 2.1. Estimating bias -- 2.1.1. How to do it by bootstrapping -- 2.1.2. Error rate estimation in discrimination -- 2.1.3. Error rate estimation: an illustrative problem -- 2.1.4. Efron's patch data example -- 2.2. Estimating location and dispersion -- 2.2.1. Means and medians -- 2.2.2. Standard errors and quartiles -- 2.3. Historical notes -- 3. Confidence sets and hypothesis testing -- 3.1. Confidence sets -- 3.1.1. Typical value theorems for M-estimates -- 3.1.2. Percentile method -- 3.1.3. Bias Correction and the Acceleration Constant -- 3.1.4. Iterated Bootstrap -- 3.1.5. Bootstrap Percentile t Confidence Intervals -- 3.2. Relationship Between Confidence Intervals and Tests of Hypotheses -- 3.3. Hypothesis Testing Problems -- 3.3.1. Tendril DX Lead Clinical Trial Analysis -- 3.4. Application of bootstrap confidence Intervals to Binary Dose-Response Modeling -- 3.5. Historical Notes -- 4. Regression analysis -- 4.1. Linear Models -- 4.1.1. Gauss-Markov Theory -- 4.1.2. Why Not Just Use Least Squares? -- 4.1.3. Should I Bootstrap the Residuals from the Fit? -- 4.2. Nonlinear Models -- 4.2.1. Examples of Nonlinear Models -- 4.2.2. Quasi-optical Experiment -- 4.3. Nonparametric Models -- 4.4. Historical Notes -- 5. Forecasting and Time Series Analysis -- 5.1. Methods of Forecasting -- 5.2. Time Series Models -- 5.3. When Does Bootstrapping Help with Prediction Intervals? -- 5.4. Model-Based Versus Block Resampling -- 5.5. Explosive Autoregressive Processes -- 5.6. Bootstrapping-Stationary Arma Models -- 5.7. Frequency-Based Approaches -- 5.8. Sieve Bootstrap -- 5.9. Historical notes -- 6. Which resampling Method Should You Use? -- 6.1. Related Methods -- 6.1.1. Jackknife -- 6.1.2. Delta Method, Infinitesimal Jackknife, and Influence Functions -- 6.1.3. Cross-Validation -- 6.1.4. Subsampling -- 6.2. Bootstrap variants -- 6.2.1. Bayesian bootstrap -- 6.2.2. Smoothed bootstrap -- 6.2.3. Parametric Bootstrap -- 6.2.4. Double bootstrap -- 6.2.5. m-out-of-n Bootstrap -- 7. Efficient and Effective Simulation -- 7.1. How Many Replications? -- 7.2. Variance Reduction Methods -- 7.2.1. Linear Approximation -- 7.2.2. Balanced Resampling -- 7.2.3. Antithetic Variates -- 7.2.4. Importance Sampling -- 7.2.5. Centering -- 7.3. When Can Monte Carlo Be Avoided? -- 7.4. Historical Notes -- 8. Special Topics -- 8.1. Spatial Data -- 8.1.1. Kriging -- 8.1.2. Block Bootstrap on Regular Grids -- 8.1.3. Block Bootstrap on Irregular Grids -- 8.2. Subset Selection -- 8.3. Determining the Number of Distributions in a Mixture Model -- 8.4. Censored Data -- 8.5. p-Value Adjustment -- 8.5.1. Description of Westfall-Young Approach -- 8.5.2. Passive Plus OX Example -- 8.5.3. Consulting Example -- 8.6. Bioequivalence Applications -- 8.6.1. Individual Bioequivalence -- 8.6.2. Population Bioequivalence -- 8.7. Process Capability Indices -- 8.8. Missing Data -- 8.9. Point Processes -- 8.10. Lattice Variables -- 8.11. Historical Notes -- 9. When Bootstrapping Fails Along with Remedies for Failures -- 9.1. Too Small of a Sample Size -- 9.2. Distributions with Infinite Moments -- 9.2.1. Introduction -- 9.2.2. Example of Inconsistency -- 9.2.3. Remedies -- 9.3. Estimating Extreme Values -- 9.3.1. Introduction -- 9.3.2. Example of Inconsistency -- 9.3.3. Remedies -- 9.4. Survey Sampling -- 9.4.1. Introduction -- 9.4.2. Example of Inconsistency -- 9.4.3. Remedies -- 9.5. Data Sequences that Are M-Dependent -- 9.5.1. Introduction -- 9.5.2. Example of Inconsistency When Independence Is Assumed -- 9.5.3. Remedies -- 9.6. Unstable Autoregressive Processes -- 9.6.1. Introduction -- 9.6.2. Example of Inconsistency -- 9.6.3. Remedies -- 9.7. Long-Range Dependence -- 9.7.1. Introduction -- 9.7.2. Example of Inconsistency -- 9.7.3. Remedies -- 9.8. Bootstrap Diagnostics -- 9.9. Historical Notes.

INF-280 (Ingeniería Civil Informática)

Última actualización 28 de septiembre 2023